Two-Dimensional Nonlinear Reaction Diffusion Equation with Time Efficient Scheme
نویسندگان
چکیده
منابع مشابه
An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملSolution of Higher Order Nonlinear Time-Fractional Reaction Diffusion Equation
The approximate analytical solution of fractional order, nonlinear, reaction differential equations, namely the nonlinear diffusion equations, with a given initial condition, is obtained by using the homotopy analysis method. As a demonstration of a good mathematical model, the present article gives graphical presentations of the effect of the reaction terms on the solution profile for various ...
متن کاملNumerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term
Fractional differential equations have attracted considerable interest because of their ability to model anomalous transport phenomena. Space fractional diffusion equations with a nonlinear reaction term have been presented and used to model many problems of practical interest. In this paper, a two-dimensional Riesz space fractional diffusion equation with a nonlinear reaction term (2D-RSFDE-NR...
متن کاملA Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation
In this paper, a new alternating direction implicit Galerkin–Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank–Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived ...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Computational Mathematics
سال: 2017
ISSN: 2161-1203,2161-1211
DOI: 10.4236/ajcm.2017.72017